

WHI Early Career Award and presentation

Alexi Vasbinder, University of Washington School of Nursing

Leveraging WHI Data to Advance Knowledge in Cardio-Oncology

Alexi Vasbinder, PhD, RN

Assistant Professor
School of Nursing
University of Washington
WHI Investigator Meeting
May 1st, 2025

Cancer survivorship

- Estimated 18.1 million cancer survivors in the United States in 2022
 - >26 million by 2040; 73% over 65y
- Largely due to improvements in cancer treatments and aging population
- Cancer survivors experience many adverse events:
 - High symptom burden
 - Reduced quality of life
 - Increased morbidity & mortality

Cancer survivorship

- Estimated 18.1 million cancer survivors in the United States in 2022
 - >26 million by 2040; 73% over 65y
- Largely due to improvements in cancer treatments and aging population
- Cancer survivors experience many adverse events:
 - High symptom burden
 - Reduced quality of life
 - Increased morbidity & mortality
 - Cardiotoxicity/cardiovascular disease

Treatment-related cardiotoxicities

Valve Disease

Radiation, Anthracyclines, Endocrine Tx

Atherosclerosis

Radiation, Endocrine Tx, Alkylating Agents, TKIs

Radiation, Anthracyclines, Endocrine Tx, Alkylating Agents, Antimetabolites, ICIs, TKIs, Taxanes

Vasospasm, Myocardial Ischemia Taxanes, Endocrine Tx, Alkylating Agents, Antimetabolites, TKIs, Anti-tumor ab, Anti-CD20 Ab, PIs

Cardiomyopathies

Radiation, Anthracyclines, Endocrine Tx, Alkylating Agents, Antimetabolites, ICIs, TKIs, HER2 Ab

Pericardial Disease

Radiation, Anthracyclines, Endocrine Tx, Alkylating Agents, ICIs

agents, ICIs

Thrombosis Alkylating Agents, Endocrine Tx, Pls, TKIs, AntiMT agents

Hypertension

Alkylating Agents, PIs, TKIs, AntiMT agents

Vasospasm **Alkylating** Agents, Antimetabolite

s, AntiMT

agents

Intersection between cardiovascular disease and cancer W

WHI contributions to cardio-oncology

- 1. Explore molecular mechanisms of CV risk in cancer survivors
 - Biomarkers and epigenetics
- 2. Characterize risk of CV events in cancer survivors
 - Evaluate CV risk factors, CV risk scores, social determinants of health, health disparities
- 3. Evaluate role of reverse cardio-oncology
 - Estimate risk of cancer after CVD
 - Explore pathways of shared risk factors

Molecular mechanisms in cardio-oncology

Biomarkers and shared mechanisms

Narayan, V. et al. J Am Coll Cardiol. 2020;75(21):2726-37.

Biomarkers and radiation-induced CVD

Ancillary study (AS622; PI: Vasbinder)

Journal of Cardiovascular Translational Research https://doi.org/10.1007/s12265-022-10320-2

ORIGINAL ARTICLE

Chronic Oxidative Stress as a Marker of Long-term Radiation-Induced Cardiovascular Outcomes in Breast Cancer

Alexi Vasbinder¹ · Richard K. Cheng² · Susan R. Heckbert³ · Hilaire Thompson¹ · Oleg Zaslavksy¹ · Rowan T. Chlebowski⁴ · Aladdin H. Shadyab⁵ · Lisa Johnson⁶ · Jean Wactawski-Wende⁷ · Gretchen Wells⁸ · Rachel Yung⁹ · Lisa Warsinger Martin¹⁰ · Electra D. Paskett¹¹ · Kerryn Reding¹

F31NR018588, PI: Vasbinder; R21HL152149, PI: Reding

Biomarkers and radiation-induced CVD

Among women treated with RT, follow for a late CV event (case) vs no CV event (control)
Case control 1:3 ratio → 56 events vs. 168 controls

Biomarkers and radiation-induced CVD

8-OH-dG was associated with 3x greater risk of CV events after breast cancer

Biomarkers and radiation-induced fatigue

*Each biomarker was recorded as the ratio of the post-BC value relative to the pre-BC biomarker and log transformed to base 2

- ■Age Adjusted
- Multivariable Adjusted

*Adjusted for age, education, smoking, BMI, stage, pre-cancer emotional wellbeing, physical function, pain, sleep disturbance, and fatigue

Biomarkers and radiation-induced fatigue

Biomarkers and radiation-induced fatigue

- 1. Inflammation plays a role in fatigue in women treated with radiation
- 2. Fatigue could be associated with underlying cardiovascular function or changes in body composition

Future studies – epigenetics and CV risk

Short-term outcomes

Characterizing risk of CV events in cancer survivors

Incidence of CV events after breast cancer (disparities)

- N=8,410 (mean at dx 70.6; 8.1% Black; median followup 16.2 years; 74.7% local cancer)
- Cumulative incidence curves accounting for competing risks
- Models adjusted for age, stage, triple negative BC, BMI, diabetes, and hypertension

Life's Essential 8 and CVD after breast cancer

- To examine the clinical utility of the American Heart Association Life's Essential 8 Score in predicting the risk of cardiovascular events after breast cancer
 - Diagnosed with stage I-III breast cancer
 - Free of prevalent CVD prior to breast cancer
 - Complete LE8 scoring variables
- LE8 Score: diet, physical activity, avoidance of nicotine, sleep, weight, lipid levels, blood glucose, and blood pressure
 - Low (0-49 points), moderate (50-79 points), and high (80-100 points) cardiovascular health

Incidence of CVD by LE8 categories

10-year cumulative incidence

Low (0-49): 16.2%

Moderate (50-79): 9.1%

High (80-100): 1.5%

Median follow-up: 6 years

Association between LE8 and CVD risk

	Model 0		Model 1		Model 2	
	sHR (95% CI)	P-value	sHR (95% CI)	P-value	sHR (95% CI)	P-value
LE8, per 10 points	0.79 (0.74, 0.85)	<0.001	0.82 (0.76, 0.89)	<0.001	0.82 (0.76, 0.89)	<0.001
LE8, categorical		<0.001		<0.001		
Low	1.0 [ref]		1.0 [ref]		1.0 [ref]	
Moderate	0.59 (0.48, 0.71)	<0.001	0.62 (0.50, 0.77)	<0.001	0.62 (0.50, 0.77)	<0.001
High	0.32 (0.19, 0.54)	<0.001	0.42 (0.25, 0.72)	0.002	0.42 (0.25, 0.73)	0.002
C-index		0.57		0.74		0.74

Model 0: LE8 + WHI CT/OS

Model 1: Model 0 + age at diagnosis, race, income

Model 2: Model 1 + cancer stage

Comparing CV risk scores

ASCVD had AUC 0.76 for predicting CV events in breast cancer survivors

Framingham Risk Score

ASCVD Risk Score

Life's Essential 8

*Approved manuscript

- To examine whether incident CVD after breast cancer is an independent predictor of health-related quality of life
 - Diagnosed with stage I-III breast cancer
 - Free of prevalent CVD prior to breast cancer
 - SF-36 measured prior to and after breast cancer
- Quality of life: SF-36 physical (PCS) and mental component scores (MCS)
 - Poor PCS and MCS scores < 40 points
- CVD defined as composite of coronary heart disease, heart failure, and stroke

- N=2,866; mean age 67.2
- 63 women had CVD between BC diagnosis and collection of postcancer SF-36
- Women had significantly poorer physical QOL after cancer

Women who experience CV events have a higher rate of poor physical QOL

A. Physical Component Score

B. Mental Component Score

	Events	HR (95% CI)	P-value
Physical Component Score	1072	1.88 (1.36, 2.59)	<0.001
Mental Component Score	310	1.05 (0.46, 2.40)	0.90
SF-36 Domain Subscales			
Physical Component			
Physical Function	869	1.89 (1.36, 2.64)	0.002
Role Physical	1058	2.00 (1.43, 2.78)	<0.001
Bodily Pain	907	1.75 (1.21, 2.53)	0.003
General Health	664	2.57 (1.78, 3.71)	<0.001
Mental Component			
Vitality	651	2.24 (1.50, 3.35)	<0.001
Mental Health	274	1.65 (0.83, 3.29)	0.15
Social Function	457	2.03 (1.22, 3.37)	0.007
Role Emotional	553	1.56 (0.93, 2.64)	0.09

Evaluating reverse cardio-oncology

Reverse cardio-oncology

European Journal of Heart Failure (2021) doi:10.1002/eihf.2207 **RESEARCH ARTICLE**

The association between heart failure and incident cancer in women: an analysis of the Women's Health Initiative

Douglas J. Leedy¹, Kerryn W. Reding^{2,3}, Alexi L. Vasbinder², Garnet L. Anderson³, Ana Barac⁴, Jean Wactawski-Wende⁵, Aladdin H. Shadyab⁶, Charles B. Eaton⁷, Wayne C. Levy¹, LiHong Qi⁸, and Richard K. Cheng¹*

Incident heart failure and risk of cancer

Incident heart failure is associated with higher risk of cancer (even after adjusting for screening behaviors)

Association of Overall Heart Failure with Incident Total and Site-Specific Cancers

	Model 2 (+Demographics/Comorbidities)			Model 3 (+Screening variable)			
	Number of events	HR (95% CI)	p-value	Number of events	HR (95% CI)	p-value	
Total	14,811	1.33 (1.16, 1.54)	<0.001	14,401	1.46 (1.29, 1.66)	<0.001	
Obesity- related	8,688	1.21 (0.99, 1.47)	0.057	8.463	1.24 (1.02, 1.51)	0.032	
Tobacco- related	3,216	1.59 (1.23, 2.05)	<0.001	3,110	1.51 (1.16, 1.97)	0.002	

shown among HF and non-HF participants.

Incident heart failure and risk of cancer

Association with heart failure appears to be driven by HFpEF

Association of HFpEF and HFrEF with Incident Total Cancers						
	Age-Adjusted			Fully-Adjusted		
	Number of	HR (95% CI)	p-value	Number of	HR (95% CI)	p-value
	events			events		
Total	7,292			5,868		
No HF	6,753	1.0 (reference)			1.0 (reference)	
Any HF	539	1.37 (1.19, 1.58)	<0.001		1.33 (1.13, 1.55)	<0.001
HFpEF	253	1.45 (1.18, 1.79)	<0.001		1.39 (1.10, 1.75)	0.005
HFrEF	169	1.08 (0.83, 1.41)	0.564		1.04 (0.78, 1.39)	0.787
Unknown EF	117	1.68 (1.26, 2.23)	<0.001		1.64 (1.21, 2.22)	0.001

Incident heart failure and risk of cancer

Figure 3 Studies investigating the association of heart failure (HF) with incident cancer. Hazard ratios (HR) and 95% confidence intervals (CI) are shown from studies evaluating the risk of incident cancer among patients with HF. HFpEF, heart failure with preserved ejection fraction; HFrEF, heart failure with reduced ejection fraction. ^aHR for HFpEF and HFrEF 1.28 (1.06–1.67) and 0.99 (0.78–1.34), respectively. ^bNumber of participants in each study with HF at risk of developing cancer.

Final remarks

- WHI has been instrumental in uncovering cardiovascular risks among cancer survivors (Cardio-Oncology Working Group within Cancer SIG)
- Findings inform risk prediction, prevention strategies, and highlight health disparities
- Shifting from discovery to actionable prevention/management
 - Testing modifiable risk factors (i.e., frailty)
 - Innovative methods to simulate interventions (i.e., physical activity)

Acknowledgments

Co-investigators

Kerryn Reding

Richard Cheng

Ana Barac

Doug Leedy

Michael Simon

Michael LaMonte

Hyunhae Lee

Chi-shan Tsai

Sophia Larson

Elena Wadden

Paola Encabo Gonzalo

Christina Dieli-Conwright

Roberta Ray

Susan Heckbert

Rachel Yung

Susan Heckbert

Oleg Zaslavsky

Roberta Ray

Electra Paskett

Aladdin Shadyab

Nazmus Saquib

Lisa Warsinger Martin

Marcia Stefanick

Joe Larson

Lisa Johnson

Joanne Manson

Garnet Anderson

Thank you for all your support!!!